
How People Visually Represent
Discrete Constraint Problems

Xu Zhu , Miguel A. Nacenta , €Ozg€ur Akg€un , and Peter Nightingale

Abstract—Problems such as timetabling or personnel allocation can be modeled and solved using discrete constraint programming

languages. However, while existing constraint solving software solves such problems quickly in many cases, these systems involve

specialized languages that require significant time and effort to learn and apply. These languages are typically text-based and often

difficult to interpret and understand quickly, especially for people without engineering or mathematics backgrounds. Visualization could

provide an alternative way to model and understand such problems. Although many visual programming languages exist for procedural

languages, visual encoding of problem specifications has not received much attention. Future problem visualization languages could

represent problem elements and their constraints unambiguously, but without unnecessary cognitive burdens for those needing to

translate their problem’s mental representation into diagrams. As a first step towards such languages, we executed a study that

catalogs how people represent constraint problems graphically. We studied three groups with different expertise: non-computer

scientists, computer scientists and constraint programmers and analyzed their marks on paper (e.g., arrows), gestures (e.g., pointing)

and the mappings to problem concepts (e.g., containers, sets). We provide foundations to guide future tool designs allowing people to

effectively grasp, model and solve problems through visual representations.

Index Terms—Problem visualization, problem modeling, problem solving, constraint programming, visual programming languages

Ç

1 INTRODUCTION

PEOPLE encounter constraint problems often in their daily
lives. For example, one might have to create a schedule

for a conference in which some events should take place
before other events, avoid certain times, and several other
constraints. One of the first steps in the process of solving
such problems, as highlighted by the problem solving expert
George P�olya, is to represent the problem [1, III].

The potential and importance of appropriate representa-
tions of problems is difficult to overstate. An effective
description of the problem can be useful to communicate the
problem to others or to ourselves at a later point in time. We
also know that how the problem is represented might have a
significant effect on a human’s ability to solve it (e.g., [2], [3]).
There are multiple examples of notations (representational
systems) considered key in the advancement of areas of sci-
ence (some graphical examples include Feynmann dia-
grams [4] and Penrose graphical notation [5]). Finally, if
software exists that can help solve the problem, a representa-
tion of the problem becomes a key element of the interface.

One way of representing problems is through visual
representation. Visuals can facilitate problem understanding
(one could understand a problem faster and more precisely),
communication (a common language of problem descrip-
tion can avoid misunderstanding between people) and in
human-machine interaction (a sufficiently precise language
would enable people to create problem specifications that
can be interpreted and solved by a computer). Although
there has been a large amount of research in InfoVis about
how visual data representations are perceived, understood
and interacted with, we know relatively little about how to
build effective problem visualizations.

In this paper, we gain understanding of how to build
problem visualizations by asking people to visually repre-
sent problems in their own way. Our explicit assumption
is that understanding how people naturally represent
problems will benefit the designs of languages for prob-
lem description. For example, a language designed with
this knowledge in mind could be easier to learn and to
translate problems into. Instead of addressing all types of
problems, we start by looking only at discrete constraint
problems.

We asked 30 participants with three different levels of for-
mal programming expertise (non-computer scientists, com-
puter scientists who are not constraint programmers and
constraint programmers) to sketch visual representations of
constraint problems using pen, paper, scissors and colour
pens. We analyzed their representations and the videos of
their processes. From these we generated a tree of visual
elements and a tree of parts of problem language (problem
concepts that participants visualized) that support a semiotic
analysis.

� X. Zhu, M.A. Nacenta, and €O. Akg€un are with the School of Computer
Science, University of St. Andrews, Jack Cole Building, North Haugh,
St. Andrews KY16 9SX, United Kingdom.
E-mail: {xz32, mans, ozgur.akgun}@st-andrews.ac.uk.

� P. Nightingale is with the School of Computer Science, University of
St. Andrews, Jack Cole Building, North Haugh, St. Andrews, KY16 9SX,
United Kingdom, and also with theDepartment of Computer Science, Univer-
sity of York, Deramore Lane, Heslington, York YO10 5GH,United Kingdom.
E-mail: pwn1@st-andrews.ac.uk.

Manuscript received 30 Aug. 2018; revised 13 Jan. 2019; accepted 18 Jan.
2019. Date of publication 24 Jan. 2019; date of current version 6 July 2020.
(Corresponding author: Xu Zhu.)
Recommended for acceptance by J. Heer.
Digital Object Identifier no. 10.1109/TVCG.2019.2895085

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020 2603

1077-2626� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2801-3271
https://orcid.org/0000-0002-2801-3271
https://orcid.org/0000-0002-2801-3271
https://orcid.org/0000-0002-2801-3271
https://orcid.org/0000-0002-2801-3271
https://orcid.org/0000-0002-9864-9654
https://orcid.org/0000-0002-9864-9654
https://orcid.org/0000-0002-9864-9654
https://orcid.org/0000-0002-9864-9654
https://orcid.org/0000-0002-9864-9654
https://orcid.org/0000-0001-9519-938X
https://orcid.org/0000-0001-9519-938X
https://orcid.org/0000-0001-9519-938X
https://orcid.org/0000-0001-9519-938X
https://orcid.org/0000-0001-9519-938X
https://orcid.org/0000-0002-5052-8634
https://orcid.org/0000-0002-5052-8634
https://orcid.org/0000-0002-5052-8634
https://orcid.org/0000-0002-5052-8634
https://orcid.org/0000-0002-5052-8634
mailto:
mailto:

Our analysis provides a first picture of how people with
different levels of formal training in programming approach
the task of describing problems.Wemeasured the variability
of mappings, catalogued regularities, and selected insights
grouped around four main issues: diagrams and mathemat-
ics use; containers and symbols versus textual labels; the
problem of abstract representation through graphical means;
and implicit information.

At this stage of the research we cannot make inferential
quantitative claims that are generalizable to the full popula-
tion (due to themethodology, the sample size, and the inabil-
ity to estimate the statistical reliability of our prevalence and
entropy measurements). Nevertheless, our findings can
inform designers of notations and visual languages dealing
with the representation of constraint problems and enable
the design of visual notations, languages and interfaces that
are easier to learn, faster to understand and are accessible to
a wider set of the general population. Some of our findings
may also have applicability beyond constraint problems
(see Section 8.4).

2 EXAMPLE PROBLEM

To give the reader a more concrete idea of what we refer to
as a “problem”, and to show the type of problem associated
to the tasks that our participant completed (problems mod-
ellable through constraint programming), we present here
the knapsack problem:

Given a knapsack of capacityX and a set of objects, each with a
specified volume and price, place items in the knapsack to maxi-
mize the total value without exceeding the capacity [6].

This problem might seem contrived, but it is equivalent
to problems people encounter in their professional and
daily lives such as truck loading. An example model in
Essence appears in csplib, problem 133 [7].

3 RESEARCH GOAL, SCOPE AND QUESTIONS

Our main goal is to provide information (e.g., a catalog of
regularities, guidelines) that can help design notations and
problem specification visual languages that are easily learn-
able, understandable and effective.

As the space of problems that people may encounter is
large, we restrict ourselves to studying problems that can be
easily described as discrete constraint optimization problems, as
defined in [8, Chap. 3]. Admittedly, these are a subset of con-
straints problems (not addressed types include geometric
and layout [9], graphs [10], [11], and continuous constraints).
The reason for this is three-fold: a) a mature set of software
tools (such as ECLiPSe Prolog [12], MiniZinc [13], Savile
Row [14] andMinion [15]) exist that can efficiently find solu-
tions; b) this problem family is particularly suitable as such
problems are common and relevant in many areas of human
activity (e.g., timetabling, resource and job allocation, and
even common puzzles [7]); and, c) the aforementioned soft-
ware solvers are inaccessible for non-experts.

In addition, because the way in which people represent
problems is influenced by their experience and formal edu-
cation, we decided to look at three cohorts of people repre-
senting a range of levels of familiarity with formal problem
specification: non-computer scientists (Non-CS), computer
scientists (CS), and constraint programmers (CP).

Based on this goal and scope, we aim to address these
questions:

Q1: Which graphical elements do people choose to exter-
nalize problem constructs?

Q2: Which constructs do people choose to represent?
Q3: Which patterns appear in how people and different

cohorts visually represent problems?

4 BACKGROUND AND RELATED WORK

Our work connects several domains of knowledge and
research. We discuss problem solving and modeling, visual
notations, sketching and visual languages, as well as con-
straint programming and related techniques. We also intro-
duce semiotic analysis as a technique.

4.1 Problem Solving and Modeling

Because problem solving is a ubiquitous human activity
it has received ample attention from multiple disciplines,
including psychology and neuroscience (e.g., [16]) and
mathematics (e.g., [1]). Existing research recognizes prob-
lem representation as one of the key elements or stages for
solving a problem, and scientists often propose notations as
a way to advance their fields [4], [5]. Writing and sketching
are often seen to be a natural extension of internal mental
processes and help to augment human memory and proc-
essing capacity [17], which has been studied also for the
visualization of data [18].

The role of representation has also been studied in educa-
tional contexts (e.g., [19]). Despite this, most externalized
problem representation notations are designed ad-hoc for
specific problems, and little attention has been paid to how
people construct these problem representations. In contrast,
there is a significant amount of work in understanding how
people build models of working systems (e.g., physical or
economic systems [20]) and, more recently, the role of mod-
els in understanding data through visualization [21].

4.2 Visual Notations, Sketching and Visual
Languages

Circuit design and manufacturing has long been supported
by the use of electrical and electronic diagrams.More recently,
the growing complexity of software spurred the development
of much work on supporting the design and understanding
of programs, culminatingwith themostwidely used software
specification language, UML [22]. These languages typically
specify architectures, structure of systems, and instances of
user behaviour, but usually not problems. In methodologi-
cally related work (although with a different focus), Walny
et al. and Cherubini et al. have studied how software engi-
neers use sketching to support their thinking processes [23],
[24], [25]. Our study shares with these the classification and
categorization of sketches.

Simultaneously, many visual programming languages
have been proposed [26], [27], [28], often as attempts to make
programming accessible to broader audiences (e.g., [29], [30],
[31]), or to manage the complexity of specifying systems that
are highly interconnected [32], [33]. Visual programming lan-
guages are typically procedural rather than descriptive or
declarative and are not free from their own limitations such as

2604 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

scalability [34] and clutter [35], [65]. Some classical drawing
and simulation tools like Sketchpad and ThingLab also pro-
vide a graphical interface while including geometric or simple
numerical constraints. [36], [37], [38] Theoretical aspects of the
design, parsing and specification of visual programming lan-
guages are extensively discussed by Marriott and Meyer [39].

4.3 Constraint Programming and Related Areas

A constraint problem is a problem that can be expressed
through variables and a set of constraints. A constraint is a
rule that expresses the allowable values of variables or of
their relationships. Constraint Programming [8] and closely-
related techniques such as Integer Linear Programming
(ILP) [40] and Propositional Satisfiability (SAT) [41] are
declarative methods for stating and solving this kind of dis-
crete decision-making and optimization problem. Each tech-
nique has strengths and weaknesses in solving efficiency.
Hybrid solvers such as SCIP [42] (hybridizing ILP and con-
straint programming) are increasingly common. Constraint
programming is successfully applied in many high-impact
areas such as timetabling, staff rostering, logistics, produc-
tion planning and experiment design [43], [44].

The process of applying constraint programming to a
problem can be crudely divided into two parts: modeling and
solving. Once a problem is modeled into a suitable language,
it can be automatically solved using a standard constraint
solver. For complex real life problems, the modeling step
presents a real difficulty: capturing a correct and efficient
model is hard, even for experts. High-level modeling lan-
guages like Essence [45], [46] and Zinc [47] reduce the need
for this expertise somewhat through abstract domain types
like sets, functions, and relations.

There are several examples of visualization tools for the
solving process, we describe a small selection here. Bauer
et al. [48] presented an integrated development environment
(IDE) for constraint programming. The IDE provides a visual
debugger which displays the search tree that is explored by
the constraint solver. The debugger is solver-independent,
with minor modifications it can support any solver. However
their system only focuses on visualizing the solving process
and not modeling. Recently Goodwin et al. [49] described a
user-centered design process for tools that visualize the
solving process, building on earlier work by Shishmarev
et al. [50]. From an Information Visualization perspective
Goodwin et al. [49] looked at how different visualizations
could be useful in the process of profiling constraint models.
In addition, tools for layout constraints such as Auto Layout
are also prevalent in IDEs. To the best of our knowledge, our
paper is the first on the topic of visualization for themodeling
phase of constraint programming.

4.4 Semiotic Analysis

In this article we look at people’s problem description ability
using the basic concepts of early semiological analysis as
initially proposed by Saussure [51], who defines symbol
systems asmappings between signs (signifiers) and the signi-
fied. In his famous Semiology of Graphics [52] Bertin dissects,
among other things, the mappings between elements on the
page (marks) and data. More recently, Horn [53] has per-
formed a semiotic analysis of the multimedia signals used in
popular and business communication. Although we borrow

from Bertin and Horn, we instead look at the relationship
between signs in the page and gestures and elements of prob-
lem descriptions.

5 METHODOLOGY

We designed a controlled observation of people represent-
ing and trying to solve constraint type problems. We
describe all the aspects of the empirical design although we
will only briefly refer to the solving phases of the study,
since this analysis does not fall within our remit.

5.1 Participants

We recruited 30 participants, 10 belonging to each of the three
expertise groups, all from a local university. Non-CS partici-
pants (7 female, between 19 and 28 years in age), were non-
computer scientists with little or no programming experi-
ence. Computer scientists (4 females, between 19 and 42 years
in age) were students in a computer science degree with little
or no experience in constraints programming but with expe-
rience of computer programming. Constraint programmers
(1 female, between 21 and 64 years in age), were a mixture of
students and staff who have either taken a constraints pro-
gramming module, taught one or conduct research in that
area. Participants received gift vouchers for their time. The
three distinct groups were chosen because the way in which
people represent problems is likely to be influenced by their
experience and formal education, and they represent a range
of levels of familiarity with formal problem specifications.

5.2 Procedure, Tasks and Problem Selection

Each participant provided written consent and was then
assigned two problems. Problems were selected from a pool
of constraint problems collected from csplib [7] as well as
suggested by constraint programming experts. We selected
six problems according to the following criteria: a) should
not be too difficult to understand by a non-programming per-
son; b) should contain elements that are familiar to most peo-
ple; c) problems that are familiar to the general public are
preferable; and d) should cover a wide range of constraint
problem types. We piloted the selected problems to ensure
that participants had sufficient time to explore them and to
avoid those not easily understandable. Two of this article’s
authors independently rated the problems for solving diffi-
culty on a scale of 1 to 5. We used the difficulty scale as well
as the type of problem to balance the selection of problems for
each participant. All groups addressed all problems the same
number of times in aggregate. The final selected problems
are: Word Crypto, Subset Sum, Sudoku, Scheduling, Magic
Square, and Knapsack. Exact formulations are in the supple-
mentary materials, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2019.2895085.

For each of the two problems assigned to them, partici-
pants had to carry out a visual modelling/specification task
as well as a problem solving task, in sequence. Programmers
in the CS and CP groups had to perform an additional pro-
gramming task. The problem solving andprogramming tasks
are not analyzed in this paper. Participants always completed
all representation tasks first, which precludes bias due to the
additional tasks performed by the CS andCP groups.

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2605

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TVCG.2019.2895085
http://doi.ieeecomputersociety.org/10.1109/TVCG.2019.2895085

In the visual modelling/specification tasks the experi-
menter asked participants to try to illustrate a problem to a
friend assuming that they can only communicate using
paper. The experimenter also instructed the participants to
try to use as few words as possible in the specifications. Our
intention here was to prevent participants simply repeating
or rephrasing the textual instruction given to them. Partici-
pants had 14 minutes to complete this task. Participants
talked aloud, describing their thoughts and actions and, occa-
sionally the experimenter would ask for clarifications or
offered short reminders of the task. After the specification
tasks they would complete the problem solving task and (if
applicable) the programming task. Then they repeated the
same process with their second assigned problem.

5.3 Apparatus

The experiment took place in a quiet closed room with the
participant and the experimenter sitting at a table. Blank
paper, pencil, pen, colored pencils, eraser, scissors and a
pencil sharpener were provided. Two different cameras
from two vantage points ensured full coverage of the paper
as well as a complete view of the participant’s actions.

5.4 Raw Data

The analyzed data consists of the two streams of video for
each of the participants (a total of 801 minutes of video per
stream), and the paper output from their specifications (avail-
able in the supplementary materials, available online). Snip-
pets from these materials in the remainder of this paper
appear markedwith the expertise group (Non-CS,CS,CP), the
number of the participantwithin that group (from 1 to 10) and
whether this was their first or second problem (E.g., CS 7,2).

5.5 Analysis Methodology

We analyzed both the artifacts from each participant (their
sketches) and their video. As a preliminary step, we trans-
coded the two video streams to allow simultaneous viewing
of the different camera angles. In a first analysis step, we ana-
lyzed the artifacts produced by creating an affinity diagram
of common occurrences and general themes. We then itera-
tively coded the features that appear within the sketches
usingMAXQDA [54] initially and then usingMicrosoft Excel,
refining the code books on each pass, following grounded
theory techniques. Towards the endwe settled into twomain
groups of codes: Visual Elements (VE) and Parts of Program-
ming Language (PL). The categories were developed using a
langauge based approach as this was most flexible. We also
iteratively coded the videos for occurrences of gestures and,
in a final pass we analyzed process elements (e.g., in which
order did examples and generalizations took place). The
authors meet 3 or 4 times during this period to clarify any
ambiguities in the categories. These form the basis for the
analysis in Sections 6.1 to 6.3.

5.6 Coding Validation Analysis

The bulk of the coding was performed by the first author. In
order to ensure the robustness of the coding system, the
remaining three authors performed two independent coding
passes of a subset of 50 of the 230 artifacts in the first pass,
and 25 of the 230 artifacts (3 out of 30 participants) and 6 of

the 60 videos, at two stages in the development of the code
books (approximately 20 person-hours of joint coding in
total). We calculated the inter-coder reliability ratio as the
number of agreements divided by the total number of codes
in the Visual Elements category, averaged across all partici-
pant outputs (result: 94:5% agreement for the final coding
session).1 To account for randomness, we also calculated the
Cohen Kappa statistic [55] using the scikit-learn python
library [56] (k ¼ 0:58 when coding VE and PL as separate
codes and k ¼ 0:37when coding VE-PL pairs). The numbers
reported above refer to the final coding validation only and
roughly correspond with what is expected in a qualitative
coding of this characteristics, especially taking into account
that the Kappa coefficient also has limitations [57], [58].
Regarding the nature of the interpretation of participants’
outputs see also Section 8.4. The supplementary materials,
available online contain the CSV and python code that we
used for these calculations.

6 ANALYSIS

The analysis results are split into three: the graphical elements
(signifiers) that participants used; a catalog of problem con-
structs (the signified); and the relationships between elements
in the previous two, with frequencies in which participants
across groupsmapped them aswell as a summary of themost
relevant regularities. Note that, althoughwe providemultiple
numerical measurements from the data (e.g., entropy), our
analysis approach does not allow statistical estimates of the
reliability of these measures; readers should exercise caution
when applying or extrapolating these numerical findings.

6.1 Elements of Visual Representation (VE)

Participants created a variety of marks on paper to describe
problems. Although we asked them to use graphical means
to convey the problems (marks on paper, or paper cut-outs),
we noticed early on that, to explain the permanent graphical
elements and their relationships, most participants used also
gestures. To avoid missing a potentially important source of
meaning, we considered gestures in our analysis. From now
on we refer to permanent marks on paper or physical objects
(cut-outs)2 and their characteristics (e.g., color) as marks, to
distinguish them from gestures (e.g., pointing with a finger).
Together, marks and gestures are the visual elements of rep-
resentation (VE), i.e., the graphical vocabulary to visualize
problems.

The tree of visual elements in Fig. 1 B contains the categori-
zation of marks and gestures that emerged from the analysis.
We made categories based on interesting regularities rather
than following pre-defined classifications of marks such as
Bertin’s [52, p.44] or Munzner’s [59, p.96]3 and gestures (e.g.,
[60], [61], [62], [63]), which might not have captured with

1. The data was coded from two perspectives, the Visual Elements
perspective, looking at marks on the paper, and Parts of Problem Lan-
guage (PL) perspective, looking at problem elements used in represen-
tation. See section 6 for more details.

2. Although we provided participants with scissors and paper to
create cutouts, only two of the CP participants used these. Moreover,
these are straightforward to map to the other categories in this section.
Thus we do not analyze cutouts as a separate representation.

3. For practical reasons we do not differentiate mark types and
channels.

2606 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

sufficient detail some of the interesting phenomena in our
specific scenario of problem representation, or might provide
too many categories, making the analysis unnecessarily
detailed.

6.1.1 Marks (VE1)

We observed a variety of marks and mark characteristics
(visual channels). We divided them into eight categories for

which we provide a brief description and a representative
example from our participants’ outputs in Fig. 2. The cat-
egories are number-coded in Fig. 1 B and the colors for the
categories are reused in further figures.

VE1.1 - Graphical Containers. In this category we group
elements that typically contain other elements inside. There
are three sub categories: boxes and circles (VE1.1.1), grids
(VE1.1.2), and tables (VE1.1.3). Boxes and circles are geometric

Fig. 1. Tree diagrams of the hierarchy of parts of problem language (PL–A,top) and visual elements (VE–B,bottom).

Fig. 2. Snippets of participant outputs highlighting examples of all visual marks.

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2607

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

shapes of a size large enough to fit text or other objects inside.
These are common in real-world diagrams and were often
used by our participants (21 out of 30 participants). Grids are
different from tables in that position of a cell in the grid is spa-
tially important (e.g., the top left cell might be special, or the
adjacency of two cells or two columns carries a meaning),
whereas in tables the order of columns and rowsmight be less
important (rows and columns in tables are typically labeled
and it typically does not matter in which order the columns
appear on a table). Grids were used by 18 out of 30 partici-
pants and tableswere used by 12 out of 30 participants. Seven
participants used both grids and tables. These numbers are
likely influenced by the problem assignments for those par-
ticipants (some problems are already in a grid or table form).

VE1.2 - Symbols. This category refers to atomic graphical
elements that are not labels or mathematical symbols (techni-
cally, labels andmathematics use symbols too butwe separate
them into their own categories). There are four subcategories
of symbols: punctuation marks such as questions marks or
exclamation marks (VE1.2.1); people (VE1.2.2), which are stick
figures or people symbols not showing emotion; emojis
(VE1.2.3), which are people symbols showing emotion; and
others (VE1.2.4), which includes more abstract symbols such
as ticks, small arrows,4 small geometric shapes (e.g., triangles,
circles, squares, stars) and brackets. 25 out of 30 participants
used symbols.

VE1.3 - Labels. Participants often used single letters or
written words to represent objects or to annotate other ele-
ments on the page. Labels are different from symbols in that
they are more directly connected to written language, and
therefore usually have a pronunciation and could represent
conceptual meaning or elements that are difficult to draw in a
more straightforward way. Numbers are sometimes also
usedwith labels to indicate order, otherwise the labels are usu-
ally unordered. Only 4 out of 30 participants never used labels.

VE1.4 - Text. We classify the use of textual language as
text when it contains complete or incomplete sentences that
go beyond just labeling. This typically happens when there
is a verb. Note that participants were explicitly discouraged
from using text directly in their representations, yet 11 out
of 30 did. This is further discussed in section 7.3 and 8.2.3.

VE1.5 - Maths. Participants used mathematical script in
two roughly different ways. We separate ‘simple’ (VE1.5.1)
use of maths such as basic mathematical expressions like
numbers and simple operators such as þ;�; > ;¼; 6¼, and S,
from what we call ‘advanced’ (VE1.5.2) mathematical expres-
sions, which might include more complex constructions
from set theory (8, 9) or formal logic. 30 out of 30 usedmaths;
this is likely to have been influenced by the problem types.
Althoughmaths is graphical, wewill not refer to maths nota-
tion as graphical notation in this paper.

VE1.6 - Arrows and Lines. Arrows and lines are common
elements in most diagrams and were also common in our
data set. Arrows and lines are used to connect graphical ele-
ments on the page with each other (see – in Fig. 2). 28 out of
30 participants used arrows or lines.

VE1.7 - Colors. Color is commonly used in visualizations
for a variety of purposes, e.g., to show different instances or

that two objects are the same. We made color pens available
to our participants, which 20 of the 30 participants used to
convey some meaning.

VE1.8 - Proximity. Sometimes participants put visual ele-
ments next to each other to indicate relationships between
them. Although this is a more implicit type of relationship
representation (there is not a permanent mark), implicit
information might still be important. We coded instances
where the proximity of elements was clearly used to convey
meaning or when the participants mentioned the spatial
relationship verbally. In some cases proximity works as an
implicit version of the graphical containers subcategory
(VE1.1 – e.g., grids where the grid is not explicitly drawn).
We observed proximity encoding in 27 out of 30 participants.

6.1.2 Gestures (VE2)

To keep the analysis manageable we only categorized ges-
tures with hands and fingers that interacted with the ele-
ments on the page or the page itself. These gestures took
place when the participants explained the representations
previously created on paper, were thinking about how to
represent the problem, or during the process of writing or
drawing. Gestureswere sometimes complementary to marks
on the page, when participants traced lines or circles
already drawn on the paper, although they often did not
correspond to marks on the paper. We distinguish between
two types of gestures, pointing gestures and path gestures.

VE2.1 - Pointing. We put in this category gestures per-
formed with a finger that highlight an object or area in
the page. There are three sub-categories: serial pointing
(VE2.1.1), where the participant pointed at one object once
or at multiple elements or areas successively; parallel point-
ing (VE2.1.2) where the participant would use multiple
fingers to point simultaneously at several elements or areas;
and multi-tap (VE2.1.3) pointing gestures where the same
element is being repeatedly tapped. All 30 of the partici-
pants used some type of pointing gesture.

VE2.2 - Paths. Paths refer to gestures where the finger or
hands trace a meaningful trajectory on the paper. We
observed three subcategories: drag (VE2.2.1) where the finger
starts on a page location, usually an object, and moves to a
different place while still in contact with the surface;manipu-
lations (VE2.2.2) which move a physical object from one loca-
tion of the page or table to another (only applies to cutouts);
and lassos (VE2.2.3) where the path traced is closed and
delimits a regular or irregular area (usuallywithmultiple ele-
ments inside). Due to their ability to connect to separate ele-
ments, drag paths are related to arrows. Lassos are also related
to graphical containers because both categories can surround
or contain other elements.

6.2 Parts of Problem Language (PL)

In this section we describe the problem concepts that partici-
pants represented, using examples from the knapsack prob-
lem described in Section 2. These do not refer only to the
physical or conceptual objects in the problem but, impor-
tantly, also to the relationships between objects, the con-
straints that objects have to comply with, and how objects act
or are acted upon. To arrive at categories that are descriptive
of problem concepts in our data, we settled on a linguistic
approach; our categories are analogous to the different parts

4. Arrows that do not go from one place to another and instead indi-
cate change (e.g., increasing or decreasing quantity).

2608 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

of speech used in linguistic grammar analysis, but adapted to
the specifics of graphical problem representation. Hence we
call these Parts of Problem Language.

Note also that we chose a classification that expresses a
broad range of constructs in problem description, regardless
of whether those actually belong to the set of constructs used
in actual constraint programming languages or other type of
programming languages. For example, constraint program-
ming languages are generally declarative, but our classifica-
tion can describe procedural constructs (e.g., “put these
objects in these variables, check that their sum is less than 10,
if it is...”). Table 1 shows a glossary of approximate corre-
spondences between our categories and the concepts and
terms used in linguistics, programming languages and con-
straint programming languages.

PL1 - Objects. The objects category is analogous to nouns or
noun phrases in language grammars. Using the knapsack
problem, each unique object (e.g., water bottle) would be an
instance (PL1.3). Variables (PL1.1) are references to objects
where the referenced object might change over time. For
example, the variable totalObjectsValue might refer to
the sum of the value of backpack objects at a particular time,
which might vary during the process or for different solu-
tions.Containers (PL1.2) are collections or groupings of instan-
ces or variables, roughly equivalent to the concept of data
structures in programming languages. For example, a list of
all the objects contained in the knapsack can be a container of

several instances (e.g., water bottle, raincoat, sandwich) or of
several variables (object1, object2, object3, etc.) if the
objects have not been specified. Sets (PL1.4) are groupings of
unique objects that denote the possible instances that can be
referenced to by a variable or container. This is roughly equiva-
lent to the concept of Enums in common programming lan-
guages. In our example, a set could be all available objects to
put in the knapsack.When a variable or a container is shown in
a particular state, we call that an example (PL1.5). E.g., a possi-
ble list of objects contained in the knapsack will be an example
if it is represented as having four specific instances of concrete
objects. Examples can also be negative, describing a state that
is not valid.

PL2 - Selections. Selections refer to the highlighting of one
ormore objectswhichwill be usedwith a verb (PL3, described
below). There are two types of selections: element selections
(PL2.1) and groups (PL2.2), depending on whether one or
more objects are being selected. A description of a problem
might use selection to denote, in our example, that a particu-
lar group of objects make up the set of objects that can be
placed in the knapsack.

PL3 - Verbs. Verbs are actions or operations that are
applied to objects. They include put into (PL3.1) which assigns
an object or selection to a container or variable, is part of
(PL3.2), which describes when containers are split into sub-
containers to show a sub-part view, is same as (PL3.3) which
indicates that two representations refer to the same object,
and instance of (PL3.4) which selects an instance out of a set.
An example of put into for the knapsack would be assigning
a particular set to fit into the knapsack container. If the same
object is represented twice, e.g., once to describe what is cur-
rently in the knapsack and once in a list of objects ordered by
value, then a mark indicating that both are the same would
be functioning as is same as.

PL4 - Modifiers. Modifiers is a large category covering all
the constraints that can be applied to objects, selections or
verbs. Modifiers can limit values, indicate that values should
be all different, to maximize or minimize or to find all possi-
bilities. For example, a representation that indicates a vari-
able that contains the sum of all weights in the knapsack
has to be below 30 would be considered a modifier.

PL5 - Sequences.Amark or a gesture functions as a sequence
if it provides an indication of temporal order, akin to a tempo-
ral adverb or adjective in linguistic terms. Sequences were
rarely used but some participants implicitly or explicitly pro-
vided procedural descriptions (e.g., algorithms). An example
sequence in our running example would be an indication
that the list of knapsack objects has to be populated first with
the object of highest value, thenwith the second, etc.

6.3 Semiotic Mappings

We investigated the mappings between visual elements and
parts of problem language that participants created. This is
a basic form of semiotic analysis that matches signifiers (in
our case VEs) with the signified (PL). The results are pro-
vided as CSVs in the supplementary materials, available
online and summarized in Fig. 3.

6.4 Input/Output Entropy Analysis

If the same type of visual element is used to carry out many
different functions (e.g., if we use textual labels to represent

TABLE 1
Correspondences between PL, CS and CP Concepts

ID Concept Part of speech Programming Constraint

Programming

PL1 Objects Nouns,

Noun Phrases

PL1.1 Variables Variables Decision variables

PL1.2 Containers Data structures,

collections

Collection of

variables

PL1.3 Instances Objects or Structs Values

PL1.4 Sets Types, Enums Domain

PL1.5 Examples Values, Data

structure state,

assignment of

values to variables

Instance

assignment

PL2 Selection Pronouns,

demonstratives

Indexing (applied

to data), constraints

(appl. to variables)

PL2.1 Elements Indexing, Aliases

PL2.2 Groups Slices

PL3 Verbs Verbs Properties,

inheritance

Indexing

(appl. to data),

constraints

(appl. to vars)

PL3.1 Put Into Assignment

PL3.2 Is Part Of Attributes (and

problem

decomposition)

PL3.3 Is Same As Equivalence

PL3.4 Instance Of Instantiation

PL4 Modifiers Adjectives Conditional

Expressions

Constraints

PL5 Sequencers Temporal

Adverbs

Logical flow

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2609

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

instances, name sets, label examples and tagmodifiers) thismight
make it harder for the reader of a diagram to recover the
meaning of the label when they encounter it. To quantify this
we can calculate the Input/Output Entropy of the mappings.
In other words, we can calculate howmany bits of additional
information we would need to recover which PL, a VE is
referring to. We perform this calculation using the finer

categories in the VE tree, and apply the following formula
to the aggregated mappings of each expertise group and
the total:

Xm
o¼1

Xn
i¼1

� xioPn
i¼1 xio

� log 2

xioPn
i¼1 xio

� �� �
�

Pn
i¼1 xioPm

o¼1

Pn
i¼1 xio

 !
;

Fig. 3. Sankey diagrams showing the mapping between VEs (top) and PL (bottom) for All, Non-CS, CS, and CP participant groups.

2610 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

where i is the input (PL) index, o is the output (VE) index,
xio is a particular number of uses for that input and output
combination, m is the total number of outputs and n is the
total number of inputs.

Table 2 summarizes the results, and shows how the
higher the level of formal education inmodelling, the smaller
the entropy value. It should be highlighted that, in our calcu-
lations we added the rule that the use of maths would not
add entropy. The reason is that maths can be effectively used
for several purposes, using well established symbols that
would not add confusion (e.g., brackets for sets, numbers as
instances). Although it would be possible to apply the same
logic to other areas of the VE tree (e.g., arrows could be com-
bined with labels or colors to separate different functions),
we did not observe occurrences of this.

7 FINDINGS

This section collects the main insights gained from the anal-
ysis presented above. Insights are discussed by topic and
highlighted bold.

7.1 Participant Diagrams are Chaotic but there is
Regularity

One goal of our studywas to understand the consistency and
level of sophistication of the graphical means that different
groups use to represent constraint problems. A priori, results
could have varied from a perfectly chaotic set of graphical
representations (the same marks or gestures are used incon-
sistently to represent any concept), to a perfectly defined and
unambiguous language, almost a graphical programming
language (people are perfectly consistent and use the same
marks always for one and the same purpose without any
space for ambiguity).

The findings of the study, especially in the form of the dia-
grams in Figs. 1, 2, 3 and the entropy Table 2 show a picture
somewhat in the middle. Participants’ representations of con-
straint problems are not consistent (input-output entropy val-
ues are not close to zero) and substantial variation exists in
how participants represent the same PLs. For example, varia-
bles (PL1.1) were represented by participants using graphical
containers, symbols, labels and in one instance maths. Very
diversely represented PLs are group selection (PL2.2 – 7 dif-
ferent first-level marks or gestures at the high level to repre-
sent selections: graphical containers, symbols, arrows/lines,
colour, proximity, and both pointing and path gestures), and
instances, sets and examples (PL1.3-5 – 6 types of marks). How-
ever, neither are the mappings completely void of regularity; if
this was the case the calculated input-output entropy values
would not be in the 1.1–1.4 range that we observed (Table 2)
and would instead be closer to the theoretical maximum
given the number of categories in our scheme—3.7 bits.

7.2 Intrinsic, Expected and Unexpected Regularities

We observed many regularities in the mappings. Here we
present the most obvious in three loose groups based on

whether they are intrinsic to the nature of problem language
and marks, expected due to the setup of the problem or the
makeup of the participant groups, and unexpected.

7.2.1 Intrinsic

We saw that graphical containersare mostly used ascontainers
(42 out of the 61 uses of containers) (Fig. 3a). Graphical con-
tainers (VE1.1) are, by definition, able to contain other ele-
ments inside, and therefore their use to represent containers
(PL1.2) is a natural choice for most people (see Fig. 4a). In
other words, graphical container marks and the concept of
containers perform very similar functions in the representa-
tion and the conceptual sides of the problem respectively,
and this leads participants to this pairing.

In a similar way, verbs, which in language usually connect
a subject with an object seem easier to represent through
arrows/lines which connect two separate elements in the
graphical space (Fig. 3b). A clear example of this is put into
(PL3.1), which is represented largely by arrows/lines (38 out of
50 cases–see Fig. 4b). We could describe this as the shape of a
visual element determining the syntax of the visual language.

We also found that the use patterns of drag gestures
(VE2.2.1) are parallel to those of arrows (VE1.6). This makes
sense, since drag gestures replicate the characteristics of
arrows/lines (they connect two separate elements), except that
they are transient visual elements rather than permanent
marks. Other similar correspondences between gestures and
marks exist: lassos (VE2.2.3) sometimes work as boxes/circles
(VE1.1.3) and serial and parallel pointing gestures (VE2.1.1
and 2.1.2) often do the same work as lines/arrows.

The paragraphs above describe regularities that are likely
a consequence of the intrinsic characteristics of the VEs and
their relationship to the PLs; however, we note that there
are always representation alternatives, even if most partici-
pants chose not to use them. For example, containment can
be represented via arrows, verbs can be represented by con-
tainment; both can also be expressed with text.

7.2.2 Expected

Numbers, which appear in our scheme as simple maths
(VE1.5.2) were often used to represent instances, sets and exam-
ples throughout the different representations and groups
(Fig. 3c). This is likely due to the problem set selected for the
experiment being often number-based.

We also saw differences in patterns across the participant
groups that can be expected from their formal training. CP
used more advanced maths, probably because they are famil-
iar with the advanced notation and regularly use it. Due
also to differences in training, the mappings also show a
clear preference by theCS and CP groups for using labels to rep-
resent variables (as they usually do when programming with

TABLE 2
Input/Output Entropy for the Different Cohorts, in bits

Cohort Non-CS CS CP Total

Input/Output Entropy 1.26 1.23 1.12 1.31

Fig. 4. Snippet of artifact showing (a) containers, (b) put into.

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2611

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

editors) (Fig. 3d). In the case of CP, labelswere the onlymech-
anism to represent variables, whereas CS used also symbols
and numbers.5 Some non-CS also used unlabeled graphical con-
tainers to represent variables (i.e., a box that contains a differ-
ent value at different times). Although this is a common
metaphor in beginner programming textbooks to introduce
the concept of variable, we only saw this in three problems
by two participants.

7.2.3 Unexpected

Some trends are not easily explainable. We noticed that
CS use arrows/lines for more purposes than other groups (for
groups, put into, is part of, is same as, instance of and sequencers,
whereas non-CS only used them for groups, put into, is part of
and instance of, and CP used them only for put into and is
part of) (Fig. 3e).

CP used graphical containers to represent more PLs than any
of the other groups (CP: containers, instances, sets, examples, ele-
ment selection and group selection; CS: containers, element selec-
tion and group selection; Non-CS: variables, containers, element
selection and group selection).

The Sankey diagrams also show that CS used color more
often than other groups (for 21 PL-VE problem instance pairs
versus CP 10 pairs and non-CS in 15 pairs) (Fig. 3f).

7.3 Use of Text versus Graphical Marks

Our experimental protocol included asking participants to
minimize the use of text and written language and favor the
use of graphical means in their representations. Despite of
this, we observed the use of text (VE1.4) in the form of sen-
tences in a substantial number of occasions (21 problem instan-
ces across all expertises). Participants used text as a last
resort for elements that they found important but difficult to
represent otherwise. Therefore, text use provides indirect
evidence about which PLs are harder to represent visually.
For example, CP Participant 6,2, when solving the subset
sum problem, encoded the constraints through text in the fol-
lowingway: “Find All SubsetsWhich Add To Zero” (Fig. 5.

The Sankey diagrams and the tables in the supplemen-
tary materials, available online show that text was mostly
used to represent modifiers (PL4), with a few examples of use for
instances, sets and examples (Fig. 3g). In other words, partici-
pants found it difficult to represent constraints with any
other types of visual marks, including maths.

7.4 Use of Maths versus Graphical Marks

The generalized and consistent use of mathematical notation
(maths–VE1.5– is the most commonly used group of marks)

is noteworthy. Some concepts such as addition, or inequality
comparisons (greater than or less than) are plausibly quite
easy to represent through graphical constructions. For exam-
ple, a greater than comparison is visually perceived by a visu-
ally obvious difference in height when represented in a bar
chart, or even by the position of an element in a number
line [64]. Yet when representing the concept of greater than
the overwhelming majority of our participants chose to sim-
ply write a mathematical expression that uses the symbol > .
Mathematical language is a formalized language that is used
to represent reality and that is learned by most people early
in their education; therefore it is not altogether surprising,
although still significant, that our participants chose to use
mathematical notation instead of drawing from visual properties or
inventing their own graphical notations. The point also extends
to the use of numbers—although there might be other repre-
sentations of cardinality and ordered sets that might be visu-
ally more evident, people’s use of numbers and digits
is second-nature. These points are further elaborated in
Section 8.

7.5 Use of Symbols versus Labels

We separated symbols (VE1.2) as a separate category of
graphical marks. Symbols are similar to labels in that they are
very flexible marks that can represent many PLs, and be
quite abstract. Participants used symbols to represent specific
instances, variables, modifiers (constraints) or to refer to con-
tainers (see (Fig. 3h)). Just as labels, they often provide a
shorthand to refer to other elements on the page that might
otherwise be time consuming to redraw (see Fig. 6).

Despite the similarity of functions with labels, symbol-
swere still heavily used. Fig. 7 shows the use of symbols for a
instance, set and variable, demonstrating their versatility
(symbols were used by 25 out of 30 participants and labels
were used by 26 out of 30).

7.6 Implicit Representations

Not everything is represented usingmarks on the paper. Par-
ticipants often represented elements, especially verbs (PL3), more
implicitly either through proximity on the page or gestures. This is
important because implicit graphical relationships and ges-
tures can be difficult to recognize by human and computer
interpreters (this is further discussed in Section 8.2.5). Some
examples of the most common implicitly represented ele-
ments follow.

Participants often indicated implicitly that something is an
instance of (PL3.4) through proximity on the page (VE1.8–18

Fig. 6. A label used to avoid redrawing the grid.

Fig. 5. Snippet of artifact showing text use.

5. Using only numbers to denote a variable only happened once in
our dataset, and is an example of a relatively easy to avoid mapping for
instances and variables—numbers are often used to designate specific
values because they have a fixed meaning, rather than to name ele-
ments that can change.

2612 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

out of 27 times–Fig. 8a) (Fig. 3i). Similarly, same as (PL3.3),
is often signalled by pointing (VE2.1–26 out of 57 times–
Fig. 8b) (Fig. 3j). Interestingly, CP did not make same as
explicit in a graphical way.6

Another part of problem language that is not commonly
represented on paper but appears sometimes as gestures is ele-
ment selection (PL2–Fig. 9), especially for CS and CP
cohorts (39 times overall, out of which 15 times for CS and
15 times for CP). Participants also denoted is part of through
gestures (5 times–Fig. 10) and proximity (5 times–Fig. 11).
Interestingly, CP did make is part of explicit for the most
part (4 out of 6 times).

Finally, looking at the Sankey diagrams from the bottom-
up, implicit representation elements (Proximity and Gestures,
VE1.8 and VE2) are only used to represent verbs and selections.

7.7 Bottom-up versus Top-Down Processes

We were interested in understanding not only the kind of
mappings that people make, but also how the process of cre-
ating representations takes place and may support under-
standing of the problem. For this purpose we carried out an
initial process analysis by looking at the videos of partici-
pants creating their representations. More specifically, we
looked at when they created examples as opposed to when
they described general structures or relationships.

The analysis revealed that most participants (all but one)
start trying to describe the problem with general rules and abstract
structures. Participants then resort to examples that often expose
the incompleteness of their specifications (26 out of the remaining
29), and finally they review their output to establish relationships
between the general and the specific. Of the three participants
that stayed at the abstract level without examples, two were
CP and one CS.

An additional observation about process is that partici-
pants often redraw parts of their representations, perhaps to
clarify and clean their output, but perhaps also to give them-
selves the time to understand, review, and debug what they
have done as part of their thinking process. Ten out of the
thirty erased or crossed out parts of their previousmarks.

8 DISCUSSION

Herewe interpret the findings from Sections 6 and 7 and elab-
orate on their implications for the goals stated in Section 3.

8.1 Addressing the Research Questions

Our analysis of the data from thirty participants provides a
picture of the visual elements that they used (Q1), and the
kinds of constructs that they aim to represent (Q2). These are
represented as theVE categories tree in Fig. 1 B and the PL cat-
egories tree in Fig. 1 A respectively. The bulk of our results,
however, is the description of the ways inwhich VEs are used
to represent the PLs by the different groups (Q3). These
are summarized in the diagrams in Fig. 3 which are then
dissected and complemented by examples in Section 7.
The following discusses the findings around the most imp-
ortant topics.

8.2 Key Topics

8.2.1 Towards a Consistent Problem Graphical

Language

In Visual Language, Global Communication for the 21st century,
Horn argues that visual forms of communication “have begun
to encounter one another and integrate into a larger, more
inclusive language” [53, p. 5]. The question occupying us is
whether this “confluence visual language” seems to be hap-
pening, and whether it applies to the specification of con-
straint problems. Within this chosen area of interest, our
evidence suggests that the use of graphicalmeans to represent
problems is not consistent across people and that people only
partially know how to take advantage of graphical means to
represent problems effectively.More formalmodelling exper-
tise translates into slightly improved consistency (Table 2).

Nevertheless, the found regularities provide a starting
point for the design of languages for constraint problem

Fig. 7. Symbols representing an instance (l), variable (r) and set (below).

Fig. 8. Figure showing (a) instance of through proximity (b) same as with
parallel pointing gesture.

Fig. 9. Element selection represented through lasso gesture.

Fig. 10. Is part of represented through a serial pointing gesture.

6. CP establish the same as relationship by naming objects with the
same label, which is explicit but we do not consider graphical. See also
Section 8.2.3.

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2613

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

specification. We can leverage this knowledge in three ways:
first, designers can choose graphical representations, con-
cepts and mappings that are somewhat familiar or “natural”
to people, with the associated advantage of making the lan-
guage easier to learn and more straightforward; second,
when people’s current representations fail to be complete,
accurate, or readable, designers can use this information to
design better alternatives; and third, knowing which con-
cepts are hardest to represent highlights what will require
better solutions andmore training.

8.2.2 Diagrams versus Maths

One might claim that we already have an appropriate lan-
guage to represent problems: the language of mathematics.
This is somewhat corroborated by our analysis; we found
examples in our data that indicate that maths notation does
already much of the work of representing problems. A basic
example is representing ordered sets. It is difficult to beat
numerals (which we classify as maths) to express order (our
participants all used numbers when trying to represent
order). We also observed that participants very rarely use
graphical means to represent number comparisons, instead
using mathematical symbols (e.g., > , <). Although these
symbols are not completely abstract or arbitrary (see Fig. 12.
left), there exist graphical alternatives in visualization to rep-
resent differences and comparisons (e.g., Fig. 12.right) yet
people generally still prefer the short hand.

Mathematical notation is powerful enough to represent
most problems, and its symbols are mostly consistent and
precise [65]. However, translation into maths is often diffi-
cult, time-consuming to write and comprehend and does not
always fit the problem. For example, geometrical axioms are
easily representable through mathematical equations but a
simple diagram can be faster to understand and remember.
Whether illustration and graphical representation enriches
or detracts from maths is a debate of philosophical conse-
quence out of scope for us here (see [66]). We make the
assumption that graphical representation can facilitate peo-
ple’s understanding of problems and data. The existence of
early illustrations in science [67], and of InfoVis as a field can
be considered a form of support for this position.

Our findings suggest that forcing people to use new
graphical representations for elements that are already well
assimilated frommaths, as in Fig. 12, is probably unnecessary

and, at worse, counterproductive; yet restricting ourselves to
maths only is not a good option either, for the reasons in the
previous paragraph, and because there are likely cognitive
benefits that escape current mathematical representations.
Among these are the benefits already highlighted by Mar-
garet Burnett and others in the long history of the study of
visual languages (e.g., [26], [34], [68], [69]), such as the higher
dimensionality of visuals, which can lead to better concrete-
ness, directness, explicitness and feedback. We also discuss
visual indexing as another possible advantage in the next
section.

8.2.3 Containers and Symbols versus Labels

The choice between a (textual) label and a graphical container
to represent a content abstraction (e.g., a variable) has inter-
esting consequences in terms of visual language: a label is a
referent that exists in the domain of language (a name),
whereas a box is a referent that exists mostly in the domain
of space (the page). Both accomplish the same kind of work
(a form of abstraction as defined in [70], [71]: a way of repre-
senting multiple elements by hiding them behind a single
referent) yet they require very different types of retrieval. In
the case of a box, when someone needs to go back to it, they
can remember the approximate location on the page and its
shape/size/color, or follow arrows fromwhere they are cur-
rently looking (if they know they are connected). Conversely,
a text label can retrieved by phonological or conceptual
memory, or by pattern matching the label text within the
content of the page to find other references to the same label.
We suspect that the different ways of retrieving elements can
have important repercussions for the building and reading
of these diagrams because the retrieval mechanism is a key
part of cognition itself [72]. However, the exact impact and
importance of retrieval within the representation process of
is not well known and requires further study.

Unlike graphical containers, symbols were used often in
all expertise groups and for non-CS and CS more often than
labels. Since text-based labels and symbols can fulfill the same
functions, why do participants use symbols instead of only
labels? We see three possible advantages:

First, if symbols are only used to represent one concept,
one part of problem language, or even a subset of elements,
recognizing the symbol provides straightforward association
to its function in the diagram. If instead we use labels for vir-
tually anything (e.g., to designate variables, containers,
instances, sets), the reader will have to retrieve the function
based on cues and context. For example, the author/reader
of the diagram may have to remember the function of that
object, or derive it from its use in context/syntax (e.g., a con-
tainer cannot be same as a variable), or from another hint in the
meaning or form of the label itself (a capital letter convention,
or the meaning of the label, such as in matrixKnapsack-

Objects). This is often the case in text-based programming

Fig. 11. Is part of represented through proximity.

Fig. 12. The greater than, lesser than and equals symbols can be con-
sidered shorthand for visual representations of comparison (left); other
graphical representations of comparison are also possible (right).

2614 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

languages, and is sometimes addressed through color and
fonts automatically changed by syntax highlighting. In our
data set we did not find any instance of the use of color or
any typographic (calligraphic) parameter for the purpose of
differentiating PLs. Another example of the use of special
symbols to designate function is in maths, where vectors are
often marked with an arrow on top, or the use of Greek let-
ters, which might denote a particular type of variable (e.g.,
angles). Note that these graphical distinctions are not strictly
necessary, butmight provide cognitive advantages.

Second, symbols are special types of glyphs, some easier to
find on a visual search due to pre-attentive processing [73,
p.152],[74]), as opposed to uniform-looking text labels.
Although one could argue that visual search does not matter
when specifying a problem description, we believe, from our
observation of the participants, that going back and forth
between the different areas of the page (or pages) is common
enough for this to have an impact (see also arguments that
present marks on paper as a key part of the cognitive pro-
cess [72], [75]).

Third, participants might like representing some objects
in a more literal way. Turning a symbol into an icon (e.g.,
using a stick person figure to represent a person in the prob-
lem) establishes a more direct link between the significant
and the signifier (see, e.g., Non-CS 10,2 in Fig. 2). This, in
turn, might facilitate thinking about the problem by bringing
it closer to a familiar situation through analogy [76].

It is important to remark that the use of symbols to denote a
particular type of elements in the page also has an input and
cognitive cost that increases with the number of special sym-
bols or categories of symbols used. Most ad hoc symbols will
take longer to create and to redraw (the nice simple shapes
are, for the most part, already taken by letters and maths)
and some energy to remember and keep consistent.

This might be the reason why we found that the CS and
CP groups used symbols less, with three CP participants
never using symbols. People with a more formal expertise
in the programming area are constrained to labels in their
daily practice, and might have developed strategies to cope
with the ambiguity.

8.2.4 Graphical Abstraction, Deduction, Induction

and Solving

During the analysis it became evident that one of the difficul-
ties of visual representation is that abstraction and some
actions and relationships are hard to represent graphically.
For example, it is hard to find effective visual representations
for a structure (e.g., a grid) that has a variable number of col-
umns or rows. A similar problem appears when trying to rep-
resent some constraints (for which our participants often
resorted to text), orwhen representing procedures, sequences,
repetition or recursion. This does not mean that it is impossi-
ble to graphically represent those (e.g., Fig. 13). Stenning and
Oberlander [77] discuss a similar problem in the context of

Euler diagrams; graphical representations make complex
structures concrete and explicit, which makes them easier to
acquire and process, yet this involves a tradeoff with the
ability to represent multiple alternatives through abstraction.

In 7.7 we described how participants generally start with
the abstract and general parts of the problem representation
and then become specific (examples), often going back and
forth. Although our observations are undoubtedly affected
by how problems were formulated in our empirical design,
the evidence suggests that processes are not exclusively bot-
tom-up or top-down, but a combination of the two, often
with several iterations. In other words, it would be inaccu-
rate to assess the process that participants go through as
entirely inductive or deductive.

Anecdotally, we have seen this when teaching constr-
aint programming. Constraint programs (models) are very
abstract; before one can get to a final model of the problem
one might need to understand specific cases (this is particu-
larly true for novices). Thus we suspect that, although most
current tools to solve constraint problems seem appropriate
for describing the final formulation of the problem, theymay
not be ideal to support the process of building and under-
standing it. Tools that support people’s complex and non-
linear thought processes have the potential to increase their
effectiveness, especially when learning. This “constructive”
approach showed benefits in other areas of visualization
(e.g., [78], [79]).

A related issue is description versus solving of problems.
Although textual constraint programming languages are con-
sidered declarative (as opposed to imperative), we observed
that many participants describe problems procedurally (e.g.,
CS 2 in Fig. 14). This might be an important source of friction
between how people naturally think about problems and
how most current constraint programming languages work,
and therefore an opportunity to improve constraintmodeling
learning and make it more accessible. Nevertheless, we note

Fig. 13. Example of variable size representation in a matrix grid.

Fig. 14. Word crypto solved through procedure: define containers and
instances, assign variable, define instance, consider next value.

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2615

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

that constraint programming is inherently declarative and
integrating procedural elements requires further research in
constraint solvers.

8.2.5 Under-Specification and Implicit Information

Perhaps partly due to the difficulty of representing abstrac-
tion and actions graphically (Section 8.2.4), we observed that
people often under-specify the problems (e.g., the representa-
tion in Fig. 15 can easily be misinterpreted). Although some-
times people simply do not provide enough information to
unambiguously describe a problem, other times the informa-
tion is there, just not committed towrittenmarks. Participants
often used gestures to indicate relationships between items or
actions. There is evidence that gestures can be key constitu-
ents of the cognitive process or a representation thereof [80],
[81], [82], [83]. From other domains we also know that some-
times subtle gestures can contain very relevant information
(e.g., [84]). Therefore, it follows that interfaces might want to
exploit gestures and other sources of implicit information
(e.g., proximity in the page) to support the process.

Another conspicuous source of implicit information is
temporal order. Looking only at the participants’ final
results, the representation is difficult to understand. How-
ever, watching the specification process (e.g., by playing the
video) is easier because the order in which things are speci-
fied contains information; people tend to assume that the
information available to them during the process is the same
as that the reader will have, and fail to see that further modi-
fication and addition of elements can make the specification
ambiguous or harder to read at a later time. We call this pro-
cess state bias: people assume that the state at creation time
will be the same as at reading time. This affects 2D media
more because objects in the page can be added anywhere in
the space, as opposed to textual media where the order is
assumed to be left-right, top-bottom. This is connected with
provenance representation (e.g., [85], [86]).

Relatedly, participants often fail to explicitly mark the ele-
ments of the problem that need to be solved, minimized or
maximized (the final outcomes), to differentiate them from

intermediate steps or even from sketches or annotations in the
page that were useful during specification. This is relevant
because the additional information, similarly to the previous
paragraph’s argument, might obscure the representation, but
also because constraint solvers might be able to optimize the
process of finding a solution by relaxing or changing interme-
diate representations. In constraint programming languages
the sought solution is usually indicated explicitly (e.g.,
Essence+ uses the reservedword find).

8.3 Suggestions for Designers

Here we distill the findings and discussion into suggestions
that might be useful for designers of constraint problem
specification (CPS) visual languages, regardless of whether
these are for communication with others, oneself at a another
time, or for computers to solve (e.g., as part of a constraint
solver user interface).

� CPS languages should probably be hybrids, combin-
ing different forms of expression drawn from mathe-
matical notation, text, iconic language and others:
– Leverage common knowledge of basic mathe-

matical notation, even if “more graphical repre-
sentations” exist.

– Consider adding text descriptions for input/
output [87].

� Support the process rather than just the outcome:
– Consider that problem specification is not only

top-down or bottom-up, but an alternation of the
two.

– Intermediate states might be wrong or under-
specified but likely part of the natural process of
specification.

� Consider leveraging implicit information as a source
of data:
– Gestures can show useful information not writ-

ten as marks.
– Proximity and temporal information also encodeuse-

ful information for reading a problem specification.

8.4 Limitations and Future Work

Readers should be careful not to interpret the regularities we
describe in Sections 6, 7, 8 as a direct blueprint of how this
kind of visual language should look like. There are two main
reasons. First, what participants did might not be the optimal
way to describe a problem, could be incomplete or even
contradictory—the design of a visual language has to balance
“naturalness” and ease of learning with other aspects such as
correctness, completeness and consistency with the domain
the language is being applied to. Second, if the language is to
be read by a machine its design should support fast and accu-
rate parsing, which is not trivial (see [39]). Conversely, the
ontology of the language and the forms of input for the UI
(e.g., dragging elements from a palette or using templates ver-
sus enabling free pen input) could have a substantial impact
in how easily the language is to be understood and put to use
by humans (we know of this kind of effect in InfoVis [79]).

Likewise, our quantitative calculations for Entropy use
non-trivial maths, which might make them appear decep-
tively precise. Although these measurements are useful to
get an idea of the level of consistency in the use of VEs, they

Fig. 15. Ambiguous graphical formulation for the Scheduling problem.
The relationship between the groups being scheduled and the two repre-
sentations of the calendar could be interpreted in different ways.

2616 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

are nevertheless very dependent on the number of catego-
ries and their coding, which are both somewhat subjective
and affected by the skill of the experimental analyst. Addi-
tionally, these measurements are relative and therefore
should never be compared to entropy measurements with a
different coding schema.

Our entropy analysis is partly based on the assumption
that it is better to have a different PL represented with a dif-
ferent VE. In Section 8.2.3 we argued for the likely advan-
tages of this approach. However, it might be possible to use
the same category of VE for multiple functions in a way that
preserves these advantages; specifically, a visual language
could use combinations of visual elements such as labels
+arrows, symbols+arrows, or colour+containers to generate
a much larger set of sub-classes of visual elements that can
then be mapped one-to-one with the PLs, perhaps even in a
more granular way (e.g., by splitting PL4–Modifiers into
different types of constraints and qualifiers). We did not
observe our participants using this approach and therefore
we can neither recommend nor discourage its use. This abil-
ity to articulate visual elements can be very expressive and
takes the visual language closer to the versatility of spoken/
written language but more research is needed to discern
whether this will have unwanted consequences in the learn-
ability, writability and readability of the language.

In this paper we have looked at the generation side of the
problem: participants produced problem specifications to
the best of their ability. However, we now know less about
which of these descriptions tend to be more complete, accu-
rate and interpretable by humans. Future work should
address this by reversing the question of the analysis to
something like what patterns of representation used by partici-
pants tend to be most complete/accurate/interpretable by humans?
The dataset of participant-generated diagrams included as
part of the supplementary materials, available online can be
a starting point. Similarly, deeper semiotic analysis of our
data is possible. For example, looking at the implied syntax
of the participant sketches might reveal interesting patterns
of how and why certain types of visual elements connect to
each other.

A decision of our empirical design that might have
impacted the results is that problems given to participants
were already formulated in text. This text is already a fairly
precise representation of the problem, and therefore our
study cannot cast light on earlier stages of the problem com-
prehension process. More research is needed to understand
how people make sense or derive problems from situations.

Another practical aspect of the experimental design to
notice when interpreting our results is age and gender bal-
ance. Our recruitment strategywas to balance gender and age
when possible, but the sign-ups resulted in more females in
non-CS than in the CS and CP cohort. Also, the age group in
CPwas higher than in the other two, which is a natural conse-
quence of constraint programming knowledge being more
specific and only encountered at a later stage in education.

Finally, our findings are directly applicable to discrete con-
straint problem representations only, since we only asked
participants to represent constraint problems. Constraint pro-
gramming is a broad paradigm that covers a large set of prob-
lems common in real life (e.g., scheduling, resource allocation,
multi-objective optimization), but there are types of problems

that are not easily represented through this paradigm (e.g.,
data-fitting, simulation) and problem kinds that are impracti-
cal or impossible to compute through constraint program-
ming, namely, problems in PSPACE or those where the
answers sought are unbounded or harder than NP-complete.
Nevertheless, we believe that some of the patterns that we
observed for constraint problem specification will also show
up when people try to describe other problem categories.

As a next step, we plan to design a visual language for dis-
crete constraints and a system for the input and visualization
of such problems, based on the finding from this study. Such
a visual language and systemwill allow for evaluation of the
finding and refining of the visual language, as well as explor-
ing any learning effects in participants.

9 CONCLUSION

In this paper we have analyzed howpeople create representa-
tions of constraint problems. The analysis is made under the
assumption that understanding the ways in which uncon-
strained participants attempt to model problems is useful for
designers of visual languages for problem specification. The
observations reveal interesting patterns, and provide pointers
for the design of future languages for problem specification,
be it for facilitating human-to-human communication about
problems or to create better UIs that improve and broaden
access to constraint modelling to non-specialists.

Some of the main findings are that participant’s diagrams
are generally not very good problem specifications but show
regularities that might be useful for design, that people natu-
rally integrate maths and textual language in their specifica-
tions, that people seem to naturally resort to symbols, besides
textual labels, in order to provide naming and abstraction of
different types of parts of the problem language, and that there
is implicit information in gestures, proximity and temporal
order that can make problem specifications more complete.

In addition to these findings, we contribute:

� A categorization of visual elements useful for analy-
sis of visual language in this domain.

� A high-level language description of how problems
are specified by 3 different expertise groups.

� Entropy measures of the mappings between the two
above.

� Suggestions for designers of visual problem specifi-
cation languages.

ACKNOWLEDGMENTS

We thank participants, Steve Linton, Uta Hinrichs, C�esar del
Pino, Aaron Quigley and the members of the SACHI
research group. This work is supported by EPSRC grants
DTG1796157 and EP/P015638/1.

REFERENCES

[1] G. Polya,Mathematics and plausible reasoning. I. Induction and analogy
in mathematics. II. Patterns of plausible inference. Princeton, NJ, US:
Princeton University Press, 1954. https://psycnet.apa.org/record/
1955-02203-000

[2] J. Zhang and D. A. Norman, “Representations in distributed cogni-
tive tasks,”Cogn. Sci., vol. 18, no. 1, pp. 87–122, 1994.

[3] J. L. Adams,Conceptual Blockbusting: AGuide to Better Ideas. NewYork,
NY,USA:Norton, 1980.

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2617

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

https://psycnet.apa.org/record/1955-02203-000
https://psycnet.apa.org/record/1955-02203-000

[4] D. Kaiser, “Physics and Feynman’s Diagrams: In the hands of a
postwar generation, a tool intended to lead quantum electrody-
namics out of a decades-long morass helped transform physics,”
Amer. Scientist, vol. 93, no. 2, pp. 156–165, 2005. [Online]. Available:
http://www.jstor.org/stable/27858550

[5] R. Penrose, “Applications of negative dimensional tensors,”Combi-
natorial Math. Appl., vol. 1, pp. 221–244, 1971.

[6] S. Martello and P. Toth,Knapsack Problems: Algorithms and Computer
Interpretations, Hoboken, NJ, USA:Wiley-Interscience, 1990.

[7] C. Jefferson, I. Miguel, B. Hnich, T. Walsh, and I. P. Gent, “CSPLib:
A problem library for constraints,” 1999. [Online]. Available:
http://www.csplib.org

[8] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Amsterdam, The Netherlands: Elsevier, 2006.

[9] G. J. Badros, A. Borning, and P. J. Stuckey, “The cassowary linear
arithmetic constraint solving algorithm,” ACM Trans. Comput.-
Hum. Interact., vol. 8, no. 4, pp. 267–306, Dec. 2001. [Online]. Avail-
able: http://doi.acm.org/10.1145/504704.504705

[10] J.Hoffswell, A. Borning, and J.Heer, “Setcola:High-level constraints
for graph layout,” in Computer Graphics Forum, Hoboken, NJ, USA:
WileyOnline Library, vol. 37, no. 3, 2018, pp. 537–548.

[11] Y. Wang, Y. Wang, Y. Sun, L. Zhu, K. Lu, C.-W. Fu, M. Sedlmair,
O.Deussen, and B. Chen, “Revisiting stressmajorization as a unified
framework for interactive constrained graph visualization,” IEEE
Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 489–499, Jan. 2018.

[12] K. Apt and M. Wallace, Constraint Logic Programming Using
ECLiPSe. Cambridge, U.K.: Cambridge Univ. Press, 2006.

[13] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “Minizinc: Towards a standard cpmodelling language,” in
Principles and Practice of Constraint Programming. Berlin, Germany:
Springer, 2007, pp. 529–543.

[14] P. Nightingale, O. Akg€un, I. P. Gent, C. Jefferson, I. Miguel, and
P. Spracklen, “Automatically improving constraint models in
Savile Row,” Artif. Intell., vol. 251, pp. 35–61, 2017.

[15] I. P. Gent, C. Jefferson, and I. Miguel, “Minion: A fast, scalable,
constraint solver,” in Proc. Conf. ECAI 2006: 17th Eur. Conf. Artif.
Intell., 2006, pp. 98–102.

[16] S. I. Robertson, Problem solving. New York, NY, US: Psychology
Press, 2001. https://psycnet.apa.org/record/2001-01493-000

[17] B. Tversky, “What do sketches say about thinking,” in Proc. AAAI
Spring Symp., Sketch Understanding Workshop, Stanford Univ., AAAI
Tech. Rep. SS-02–08, 2002, pp. 148–151.

[18] J. Walny, S. Huron, and S. Carpendale, “An exploratory study of
data sketching for visual representation,” in Computer Graphics
Forum, vol. 34, no. 3. Hoboken, NJ, USA:WileyOnline Library, 2015,
pp. 231–240.

[19] A. Kohnle andG. Passante, “Characterizing representational learn-
ing: A combined simulation and tutorial on perturbation theory,”
Phys. Rev. Phys. Educ. Res., vol. 13, no. 2, 2017, Art. no. 020131.

[20] D. Gentner andA. L. Stevens,MentalModels. NewYork: Psychology
Press, 1983. https://www.taylorfrancis.com/books/9781317769408

[21] Z. Liu and J. Stasko, “Mental models, visual reasoning and inter-
action in information visualization: A top-down perspective,”
IEEE Trans. Vis. Comput. Graph., vol. 16, no. 6, pp. 999–1008,
Nov./Dec. 2010.

[22] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage ReferenceManual. NewYork,NY,USA: PearsonHigher Educa-
tion, 2004.

[23] J. Walny, J. Haber, M. D€ork, J. Sillito, and S. Carpendale, “Follow
that sketch: Lifecycles of diagrams and sketches in software devel-
opment,” in Proc. 6th IEEE Int. Workshop Visualizing Softw. Under-
standing Anal, 2011, pp. 1–8.

[24] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: How and why software developers use
drawings,” in Proc. SIGCHI Conf. Human Factors Comput. Syst.,
2007, pp. 557–566.

[25] J. Walny, S. Carpendale, N. H. Riche, G. Venolia, and P. Fawcett,
“Visual thinking in action: Visualizations as used on whiteboards,”
IEEETrans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2508–2517,Dec. 2011.

[26] B. A. Myers, “Taxonomies of visual programming and program
visualization,” J. Visual Lang. Comput., vol. 1, no. 1, pp. 97–123,
Mar. 1990. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1045926X05800369

[27] M. Boshernitsan and M. S. Downes, “Visual programming lan-
guages: A survey,” Univ. California, Berkeley, CA, USA, Rep. No.
UCB/CSD-04–1368, 2004.

[28] D. D. Hils, “Visual languages and computing survey: Data flow
visual programming languages,” J. Visual Lang. Comput., vol. 3,
no. 1, pp. 69–101, 1992.

[29] M. Resnick, J. Maloney, A. Monroy-Hern�andez, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver,
B. Silverman, andY.Kafai, “Scratch: Programming for all,”Commun.
ACM, vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[30] D. J. Rough and A. J. Quigley, “Jeeves-an experience sampling study
creation tool,” in BCS Health Informatics Scotland (HIS) . BCS Elec-
tronic Workshops in Computing (eWiC) , BCS , 2017 BCS Health
Scotland Conference , Edinburgh , United Kingdom , 3/10/17
https://research-repository.st-andrews.ac.uk/handle/10023/11699

[31] G. G.M�endez, M. A. Nacenta, and S. Vandenheste, “ivolver: Interac-
tive visual language for visualization extraction and reconstruction,”
in Proc. CHI Conf. Human Factors Comput. Syst., 2016, pp. 4073–4085.

[32] Mathworks, “Simulink - Simulation and Model-Based Design -
MATLAB & Simulink,” Aug. 8, 2018. [Online]. Available: https://
www.mathworks.com/products/simulink.html

[33] Cycling ’74, “Max Software Tools for Media | Cycling ’74,” Aug. 8,
2018. [Online]. Available: https://cycling74.com/products/max/

[34] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, and
P. V. Zee, “Scaling up visual programming languages,” Comput.,
vol. 28, no. 3, pp. 45–54,Mar. 1995.

[35] B. A. Nardi, A Small Matter of Programming: Perspectives on end User
Computing. Cambridge, MA, USA: MIT Press, 1993.

[36] I. E. Sutherland, “Sketch pad aman-machine graphical communica-
tion system,” in Proc. SHAREDes. Autom.Workshop, 1964, pp. 6–329.

[37] A. Borning, “The programming language aspects of thinglab, a
constraint-oriented simulation laboratory,” in Readings in Artificial
Intelligence and Databases. Amsterdam, The Netherlands: Elsevier,
1988, pp. 480–496.

[38] A. Borning, “Graphically defining new building blocks in thinglab,”
SIGCHI Bull., vol. 19, no. 1, Jul. 1987, Art. no. 75. [Online]. Available:
http://dl.acm.org/citation.cfm?id=28189.1044814

[39] K. Marriott and B. Meyer, Visual Language Theory, K. Marriott and
B. Meyer, Eds. New York, NY, USA: Springer-Verlag, 1998.

[40] F. S. Hillier and G. J. Lieberman, Introduction to Operations
Research, 9th ed. New York, NY, USA: McGraw-Hill, 2010.

[41] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability,
vol. 185. Amsterdam, The Netherlands: IOS Press, 2009.

[42] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath,
R. L. Gottwald, G. Hendel, C. Hojny, T. Koch, M. E. L€ubbecke,
S. J. Maher, M. Miltenberger, B. M€uller, M. E. Pfetsch, C. Puchert,
D. Rehfeldt, F. Schl€osser, C. Schubert, F. Serrano, Y. Shinano,
J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig,
“The SCIP optimization suite 6.0,” Zuse Institute Berlin, Berlin,
Germany, Rep. no. 18–26, Jul. 2018. [Online]. Available: http://nbn-
resolving.de/urn:nbn:de:0297-zib-69361

[43] J.-F. Puget, “Applications of constraint programming,” in Proc.
Int. Conf. Principles Practice Constraint Program., 1995, pp. 647–650.

[44] M. Wallace, “Practical applications of constraint programming,”
Constraints, vol. 1, no. 1/2, pp. 139–168, 1996.

[45] A. M. Frisch, W. Harvey, C. Jefferson, B. Mart�ınez-Hern�andez,
and I. Miguel, “Essence: A constraint language for specifying
combinatorial problems,” Constraints, vol. 13, no. 3, pp. 268–306,
Sep. 2008. [Online]. Available: https://doi.org/10.1007/s10601–
008-9047-y

[46] €O. Akg€un, I. Miguel, C. Jefferson, A. M. Frisch, and B. Hnich,
“Extensible automated constraint modelling,” in Proc25th AAAI
Conf. Artif. Intell., 2011, pp. 4–11.

[47] M. G. de la Banda, K. Marriott, R. Rafeh, and M. Wallace, “The
modelling language zinc,” in Proc. Int. Conf. Principles Practice Con-
straint Program., 2006, pp. 700–705.

[48] A. Bauer, V. Botea, M. Brown, M. Gray, D. Harabor, and J. Slaney,
“An integrated modelling, debugging, and visualisation environ-
ment for g12,” in Proc. Int. Conf. Principles Practice Constraint Pro-
gram., 2010, pp. 522–536.

[49] S. Goodwin, C. Mears, T. Dwyer, M. G. de la Banda, G. Tack, and
M. Wallace, “What do constraint programming users want to see?
exploring the role of visualisation in profiling of models and
search,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 281–
290, Jan. 2017.

[50] M. Shishmarev, C. Mears, G. Tack, and M. Garcia de la Banda,
“Visual search tree profiling,” Constraints, vol. 21, no. 1, pp. 77–94,
Jan. 2016.

2618 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

http://www.jstor.org/stable/27858550
http://www.csplib.org
http://doi.acm.org/10.1145/504704.504705
https://psycnet.apa.org/record/2001-01493-000
https://www.taylorfrancis.com/books/9781317769408
http://www.sciencedirect.com/science/article/pii/S1045926X05800369
http://www.sciencedirect.com/science/article/pii/S1045926X05800369
http://doi.acm.org/10.1145/1592761.1592779
https://research-repository.st-andrews.ac.uk/handle/10023/11699
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://cycling74.com/products/max/
http://dl.acm.org/citation.cfm?id=28189.1044814
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
https://doi.org/10.1007/s10601--008-9047-y
https://doi.org/10.1007/s10601--008-9047-y

[51] F. De Saussure, Course in General Linguistics. New York, NY, USA:
Columbia University Press, 2011.

[52] J. Bertin and J.B. William, Semiology of graphics: diagrams, networks,
maps. Redlands, Calif: ESRI Press, 2011. https://www.worldcat.
org/title/semiology-of-graphics-diagrams-networks-maps/oclc/
656556106

[53] R. E. Horn, Visual language: global communication for the 21st cen-
tury. Bainbridge Island, Wash: MacroVU, Inc, 1998. https://
www.worldcat.org/title/visual-language-global-communication-
for-the-21st-century/oclc/41138655

[54] VERBI Software, “MAXQDA 2018, ” 2017. [Online]. Available:
https://www.maxqda.com

[55] M. L.McHugh, “Interrater reliability: The kappa statistic,” Biochemia
Medica, vol. 22, no. 3, pp. 276–282, Oct. 2012. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[57] J. S. Uebersax, “Kappa coefficients: A critical appraisal,” Aug. 3,
2018. [Online]. Available: http://www.john-uebersax.com/stat/
kappa.htm

[58] J. S. Uebersax, “Diversity of decision-making models and the mea-
surement of interrater agreement,” Psychol. Bull., vol. 101, no. 1,
pp. 140–146, 1987.

[59] T. Munzner, Visualization Analysis and Design. Boca Raton, FL,
USA: AK Peters/CRC Press, 2014.

[60] D. Grijincu, M. A. Nacenta, and P. O. Kristensson, “User-defined
interface gestures: Dataset and analysis,” in Proc. 9th ACM Int.
Conf. Interactive Tabletops Surfaces, 2014, pp. 25–34.

[61] R. Laban, The Mastery of Movement, 4th ed., L. Ullmann, Ed. Alton,
U.K.: Dance Books Ltd, Mar. 2011.

[62] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation
of hand gestures for human-computer interaction: A review,”
IEEE Trans. Pattern Anal. Mach. Intell., no. 7, pp. 677–695, Jul. 1997.

[63] F. K. Quek, “Toward a vision-based hand gesture interface,” in
Virtual Reality Software and Technology. Singapore: World Scientific,
1994, pp. 17–31.

[64] G. Lakoff and R. N�u~nez, Where Mathematics Comes from: How the
Embodied Mind Brings Mathematics Into Being. New York, NY,
USA: Basic Books, 2000. [Online]. Available: https://books.
google.co.uk/books?id=K4PwAAAAMAAJ

[65] S. Wolfram, “Mathematical notation: Past and future,” presented at
theMathMLMathWeb:MathML Int. Conf., Urbana, IL, USA, 2000.

[66] W. Oechslin, Oliver Byrne, the first six books of the Elements of Euclid, in
which coloured diagrams and symbols are used instead of letters for the
greater ease of learners. Köln: Taschen, 2010. https://www.worldcat.
org/title/oliver-byrne-the-first-six-books-of-the-elements-of-euclid-in
-which-coloured-diagrams-and-symbols-are-used-instead-of-letters-
for-the-greater-ease-of-learners/oclc/664135352

[67] C. A. L. Lee, “ The Science and Art of the Diagrams: Culturing phys-
ics and mathematics, Part 1,” 2013. [Online]. Available: https://
blogs.scientificamerican.com/guest-blog/the-science-and-art-of-
the-diagrams-culturing-physics-and-mathematics-part-i/

[68] S. K. Chang, M. M. Barnett, S. Levialdi, K. Marriott, J. J. Pfeiffer,
and S. L. Tanimoto, “The future of visual languages,” in Proc.
IEEE Symp. Visual Languages., Sep. 1999, pp. 58–61.

[69] D. W. McIntyre and M. M. Burnett, “Visual Programming,” Comput.,
vol. 28, no. 3, pp. 14–16, 1995. [Online]. Available: doi.ieeecomputersociety.
org/10.1109/MC.1995.10027

[70] G.G.M�endez,M.A.Nacenta, andU.Hinrichs, “Considering agency
and data granularity in the design of visualization tools,” in Proc.
CHI Conf. Human Factors Comput. Syst., 2018, pp. 638:1–638:14.
[Online]. Available: http://doi.acm.org/10.1145/3173574.3174212

[71] G. Kiczales, “Beyond the black box: open implementation,” IEEE
Softw., vol. 13, no. 1, pp. 8–11, Jan. 1996.

[72] D. H. Ballard, M. M. Hayhoe, P. K. Pook, and R. P. Rao, “Deictic
codes for the embodiment of cognition,” Behavioral Brain Sci., vol. 20,
no. 4, pp. 723–742, 1997.

[73] C. Ware, Information Visualization: Perception for Design.
Amsterdam, The Netherlands: Elsevier, May 2012, google-Books-
ID: UpYCSS6snnAC.

[74] J. M.Wolfe, “ Guided Search 2.0 A revisedmodel of visual search,”
Psychonomic Bull. Rev., vol. 1, no. 2, pp. 202–238, Jun. 1994. [Online].
Available: https://link.springer.com/article/10.3758/BF03200774

[75] A. Clark, Supersizing the Mind: Embodiment, Action, and Cognitive
Extension. New York, NY, USA: Oxford Univ. Press, 2008.

[76] M. L. Gick and K. J. Holyoak, “Analogical problem solving,” Cogn.
Psychol., vol. 12, no. 3, pp. 306–355, 1980. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/0010028580900134

[77] K. Stenning and J. Oberlander, “ A cognitive theory of graphical and
linguistic reasoning: Logic and implementation,” Cogn. Sci., vol. 19,
no. 1, pp. 97–140. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1207/s15516709cog1901_3

[78] S. Huron, S. Carpendale, A. Thudt, A. Tang, and M. Mauerer,
“Constructive visualization,” in Proc. Conf. Designing Interactive
Syst., 2014, pp. 433–442. [Online]. Available: http://doi.acm.org/
10.1145/2598510.2598566

[79] G. G. M�endez, U. Hinrichs, andM. A. Nacenta, “Bottom-up vs. top-
down: Trade-offs in efficiency, understanding, freedom and creativ-
ity with infovis tools,” in Proc. CHI Conf. Human Factors Comput.
Syst., 2017, pp. 841–852. [Online]. Available: http://doi.acm.org/
10.1145/3025453.3025942

[80] A. Manches and C. O’malley, “Tangibles for learning: a represen-
tational analysis of physical manipulation,” Personal Ubiquitous
Comput., vol. 16, no. 4, pp. 405–419, 2012.

[81] S. Goldin-Meadow, H. Nusbaum, S. D. Kelly, and S. Wagner,
“Explaining math: Gesturing lightens the load,” Psychological Sci.,
vol. 12, no. 6, pp. 516–522, 2001.

[82] D. Kirsh and P. Maglio, “On distinguishing epistemic from
pragmatic action,” Cogn. Sci., vol. 18, no. 4, pp. 513–549, Oct. 1994.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/0364021394900078

[83] A. Manches, C. O’Malley, and S. Benford, “The role of physical
representations in solving number problems: A comparison of
young children’s use of physical and virtual materials,” Comput.
Educ., vol. 54, no. 3, pp. 622–640, 2010. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0360131509002632

[84] R. Kruger, S. Carpendale, S. D. Scott, and S. Greenberg, “ Roles of
orientation in tabletop c Collaboration: Comprehension, coordina-
tion and communication,” Comput. Supported Cooperative Work,
vol. 13, no. 5/6, pp. 501–537, Dec. 2004. [Online]. Available:
https://link.springer.com/article/10.1007/s10606–004-5062-8

[85] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical his-
tories for visualization: Supporting analysis, communication, and
evaluation,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 6,
pp. 1189–1196, Nov. 2008.

[86] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing
provenance in visualization and data analysis: An organizational
framework of provenance types and purposes,” IEEE Trans. Vis.
Comput. Graph., vol. 22, no. 1, pp. 31–40, Jan. 2016.

[87] Z. Kiziltan, M. Lippi, and P. Torroni, “Constraint detection in natu-
ral language problemdescriptions.” in Proc. 25th Int. Joint Conf. Artif.
Intell., 2016, pp. 744–750.

Xu Zhu is a PhD student at the School of Computer Science, University
of St Andrews. His PhD is in the field of Human Computer Interaction
looking at problem representation and visualization.

Miguel Nacenta is a Senior Lecturer at the School of Computer Sci-
ence, University of St Andrews, and co-founder of the St Andrews
Human-Computer Interaction group (SACHI). His research interests are
information visualization, infotypography, technologies for reading, novel
interactive surfaces and spaces, as well as CSCW.

€Ozg€ur Akg€un is a Lecturer at the School of Computer Science, Univer-
sity of St Andrews. His research interests include high-level modelling
approaches in Constraint Programming and other combinatorial optimisa-
tion paradigms. Contact him at ozgur.akgun@st-andrews.ac.uk

Peter Nightingale is a lecturer in the Department of Computer Science,
University of York, UK. His research interests include modelling and
solving of constraint satisfaction, discrete optimisation and other similar
problems. He has a particular interest in modelling languages and high-
level specification languages for expressing such problems, and how
those languages might be translated for solvers. He holds a PhD in
Computer Science from the University of St Andrews. Contact him at
peter.nightingale@york.ac.uk

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHU ET AL.: HOW PEOPLE VISUALLY REPRESENT DISCRETE CONSTRAINT PROBLEMS 2619

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:20:59 UTC from IEEE Xplore. Restrictions apply.

https://www.worldcat.org/title/semiology-of-graphics-diagrams-networks-maps/oclc/656556106
https://www.worldcat.org/title/semiology-of-graphics-diagrams-networks-maps/oclc/656556106
https://www.worldcat.org/title/semiology-of-graphics-diagrams-networks-maps/oclc/656556106
https://www.worldcat.org/title/visual-language-global-communication-for-the-21st-century/oclc/41138655
https://www.worldcat.org/title/visual-language-global-communication-for-the-21st-century/oclc/41138655
https://www.worldcat.org/title/visual-language-global-communication-for-the-21st-century/oclc/41138655
https://www.maxqda.com
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
http://www.john-uebersax.com/stat/kappa.htm
http://www.john-uebersax.com/stat/kappa.htm
https://books.google.co.uk/books?id=K4PwAAAAMAAJ
https://books.google.co.uk/books?id=K4PwAAAAMAAJ
https://www.worldcat.org/title/oliver-byrne-the-first-six-books-of-the-elements-of-euclid-in-which-coloured-diagrams-and-symbols-are-used-instead-of-letters-for-the-greater-ease-of-learners/oclc/664135352
https://www.worldcat.org/title/oliver-byrne-the-first-six-books-of-the-elements-of-euclid-in-which-coloured-diagrams-and-symbols-are-used-instead-of-letters-for-the-greater-ease-of-learners/oclc/664135352
https://www.worldcat.org/title/oliver-byrne-the-first-six-books-of-the-elements-of-euclid-in-which-coloured-diagrams-and-symbols-are-used-instead-of-letters-for-the-greater-ease-of-learners/oclc/664135352
https://www.worldcat.org/title/oliver-byrne-the-first-six-books-of-the-elements-of-euclid-in-which-coloured-diagrams-and-symbols-are-used-instead-of-letters-for-the-greater-ease-of-learners/oclc/664135352
https://blogs.scientificamerican.com/guest-blog/the-science-and-art-of- the-diagrams-culturing-physics-and-mathematics-part-i/
https://blogs.scientificamerican.com/guest-blog/the-science-and-art-of- the-diagrams-culturing-physics-and-mathematics-part-i/
https://blogs.scientificamerican.com/guest-blog/the-science-and-art-of- the-diagrams-culturing-physics-and-mathematics-part-i/
doi.ieeecomputersociety.org/10.1109/MC.1995.10027
doi.ieeecomputersociety.org/10.1109/MC.1995.10027
http://doi.acm.org/10.1145/3173574.3174212
https://link.springer.com/article/10.3758/BF03200774
http://www.sciencedirect.com/science/article/pii/0010028580900134
http://www.sciencedirect.com/science/article/pii/0010028580900134
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1901_3
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1901_3
http://doi.acm.org/10.1145/2598510.2598566
http://doi.acm.org/10.1145/2598510.2598566
http://doi.acm.org/10.1145/3025453.3025942
http://doi.acm.org/10.1145/3025453.3025942
http://www.sciencedirect.com/science/article/pii/0364021394900078
http://www.sciencedirect.com/science/article/pii/0364021394900078
http://www.sciencedirect.com/science/article/pii/S0360131509002632
http://www.sciencedirect.com/science/article/pii/S0360131509002632
https://link.springer.com/article/10.1007/s10606--004-5062-8
mailto:
mailto:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

